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The problem of the combustion stabi l i ty  of powders and explosives was first examined by Ya. 1~. Ze l 'dov ich  [1] on 
the basis of his theory of the mechanism of combustion of these substances. I t  was established that Steady-state combus- 
tion of a powder is possible only for k < 1, where k = 8 (T s - T0) ,  8 = (~ In U/a T O )~ is the temperature  coefficient  

P 
of the burning rate U, To is the in i t ia l  temperature ,  and T S is the temperature at the gasification surface. Physically,  
this implies that s teady-s ta te  combustion of a powder is p0ssible if the temperature gradient at the surface of the con-  
densed phase (k-phase) does not exceed a certain value;  a powder which is not hot enough cannot burn. 

Subsequent exper imenta l  investigations have shown, however, that this combustion stabil i ty cri terion is not always 
satisfied [2-4] .  The discrepancy between theory and experiment  can be associated,  in part icular,  with neglect  of the 
exothermic react ion in the k-phase.  

Here the combustion stabi l i ty  of a powder is investigated by the method of smal l  perturbations, taking into account 

the hea t  release in the k-phase and assuming that the combustion zone in the gas and the region of chemica l  react ion in 
the k-phase di rect ly  adjacent  to the gasif icat ion surface are inertialess, The s tabi l i ty  condit ion is obtained for the two 

poss ib l e  combustion regimes with react ion in the k-phase discussed in [6, 7] (T s - and O-regimes) ,  and for two different 

types of reaction.  In the case of th e Q- reg ime  it is assumed that gasif icat ion of the k-phase takes place  as a result of an 
ex0thermic react ion when the intrinsic heat  release,  which character izes  the burning depth, becomes equal  to a speci-  
fied value Q1. In this case in the n onstationary regime the temperature  at the gasif icat ion surface does not remain  con- 
stant.  In the T S - reg ime  it is assumed that gasification of the k-phase proceeds at a certain defini te  temperature  (de-  

pending, possibly, on the pressure ), which is at tained thanks to heat  supplied from the gas phase and as a result of in-  
trinsic heat  release,  the quantity of heat  released in the k-phase in the nonstationary regime being a var iable .  

Note that the question of the effect of heat release in the k-phase and the change of surface temperature  on the 

s tabfl i ty of combustion of a powder in the Q-reg ime with a zero-order  exothermic react ion in the k 'Phase ,  where the 
region of combustion in the gas and the zone of chemica l  react ion in the k-phase are assumed inert ialess,  has recent ly  
been  investigated in [6]. The results contained in w of the present paper correspond to the case considered in [5], 

The conclusions are not the same. Obviously, this discrepancy is associated with the fact that  the authors of [5], who 
used the method of Ze l ' dov ich  and Frank-Kamenetski i  to derive a formula for the rate of gasification ef the k-phase 
(this leads to a relat ion between the rate of gasif icat ion,  heat flux from the gas phase, and the surface temperature  ) 
assumed that under nonstationary conditions perturbation of the rate of gasif icat ion does not depend on perturbation 

of the heat  flux from the gas phase. 

w 1. Formulation of the Problem 

Stabi l i ty  in  a two-stage combustion m o d e l  is considered. The combustion zone is shown schemat ica l ly  in the f ig-  

ure. The temperatur  e gradients at the boundaries of the react ion zone in the k-phase are denoted by ~0S0 and goSt. It 
is assumed that the temperature  dependences of the chemica l  react ion rates ~I(T)  and ~ ( T )  (in the k:phase and in 
the gas) are such that the reactions proceed mainly  within narrow temperature  ranges close to T S and T 2 in the regions 
x I < x < 0 and x 2 < x < x 3 , respect ively (T 2 is the temperature  of the combustion products). A quantity of heat  Q1 is 
released in the k-phase,  and a quantity Q2 in the gas phase. The to ta l  heat  release is determined by the in i t ia l  chemi -  
cal  energy of the  fuel and is equal t o  Q1 + Q2 = const. The region  0 < x < x 2 is the zone of preheating in the gas. tt 
is assumed that the character is t ic  t ime  of processes in the zone x i < x < x a is smal l  compared with the t ime  of recon-  

struction of the thermal  layer  in the preheating zone in the k-phase, occupying the region - ~o < x < x r It follows from 
this assumption and from the equal i ty  ~t = D, where D and • are the diffusion coeff ic ient  and thermal  diffusivity of the 
gas, that at any instant the concentrat ion and temperature  fields in the gas are s imilar .  In relat ion to l inear iza t ion  it 

is assumed that the t ime -dependence  of al l  the perturbations is described by the mul t ip l ier  exp ( co t ) . 

w 2. Combustion Stabi l i ty  in the Q-mode l  with a Zero-orde  r Reaction in the k-phase 

In accordance with the assumption concerning an inertialess react ion zone in the k-phase,  we shall  use the 
Ze l ' dov ich -F rank-Kamene t sk i i  approximation [8] in order tO de termine  the rate of gasif icat ion under nonstationary con-  

dit ions.  

In the case in question, this approximat ion  leads to the following equations for the  mass rate of gasific~tion: 
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~a(pso = 1 / ~'-'tps~ d- A1 (Ts)  (A, (Y's) --: 2Z,h~ , , : (2" ~) 

TS 

T, 

~ltPso -- )hq~sl = m.Ql , 

where x I is the thermal conductivity, I h is the heat of reaction in the k-phase. 
( 2 . 1 )  and (2.2),  we obtain 

lnQ1 (2)~lq)So ~ mQi) = A1 ( T s ) .  

Linearizing (2.3) for ~he condition O~ = const, we find 

6m 6TS 6~PS. 
----zl-- + ~ : 0  

( 1  - -  ~*) ,~  2' s - -  I ' ,  ~Ps0 

( 2 . 2 )  

After e l imina t ing  the quanti ty s0S1 from 

(2.3) 

(2 .4)  

Q~ Mh~COx (Ts) 
(ll= ci (l 's-- To) ' :i - m'aciQ1 )"  

For the mass burning rate in the gas we have 

T~ 

mQ~= VA=, A=(T2)-- 2h2 I L2(I)~(T)dT. 
TS 

(2.b) 

Note that here Q= > h 2, since 01 < hi,  

sidered * 

I 7- i 

', [ 1 / ' ,  :, 

.r, a : t a x  , z 

Fig. 1. 

while the mechanism of release of heat h I - Q 1  after gasification is not con- 

I inearizing Eq. (2, 5) for the condition Oz = const, taking into account 

~52 (T2) >> ~2 (Ts)  , we obtain 

6m 61"~ ( Iz~L..~._ (1'~) "1'2 \ 
,,z z2 -T,,7 = 0 Z~ ---- m~Q? ]" (2. ~) 

In the quasistarionary approximation, the law of conservation of energy in 

the region x 1 < x < x a may be written, following [l], in the form 

m (cxTs + q l  l- Q=) - -  ~,l~ps0 = t a c i T 2  , (2. 

where c 1 and % are the specific heats of the k-phase and the gas at constant pressure. 

On lineartzing (2.7) and taking into account the condition Qi + Qz = const, we obtain: 

( ci(Ts--T~ 6,n 6Ts / 6T.2 6(PS~ ----- 0 ,  , ----- . 

m @ 7' s -  To ~ T~ cps o c~'l'2 (2.8) 

we shall obtain one more relation between the perturbations of the mass velocity 5m, the temperature gradient 
6~#Sf~, and the surface temperature 6T S from the solution of the problem of the reconstruction of the thermal layer in 

the region of the k-phase, where the chemical  reaction rate is negligibly small,  for small changes in the surface veloc- 

ity assuming that the temperature at the point x t is equal to the surface temperature T S . For perturbations depending 

on t ime as exp (r t ), this solution has the form: 

6T (x) - -  T s -  To 6m exp (Ux) I U~lx, / U~%x\ 9. m ~ + B l O X p l ~ ) q - B 2 e x p ~ - - ~ 7 - -  ) (e.9) 

(~ = ~ / u ' ,  I%, 2 = t :k Y V g ~ ) ,  

where B l and B~ are arbitrary constants, z 1 is the thermal diffusivity of the k-phase, and U is the rate of linear displace- 

ment on the surface. From the condition fit ( - -~ )  = 0 it follows that B 2 = 0. We find B 1 from the boundary conditions 

for x = 0 and establish the required relation = 

3", 5m [q 5Y's 6~s~ =0 (~ I0) 
zP. m '2 T s -1 ' o - k  e~s----- 7 

"In  proofreading, 13. V. Novozhilov pointe6 out that if in (2.5) it is assumed that O3 = h= [which is physically more 

justifiable than (2 .5)  ], then the stability conditions for the T S-model  obtained in w and 5 assume the form e < 1, 

i . e . ,  they coincide with the stability criterion for Zel 'dovich 's  model. 
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From Eqs. (2.4),  (2.6),  (2.8) and (2.10) we obtain the characteris t ic  equation for g2 : 

q.9. + 2 (~ - -  t) ~ + ~ = (Tf~ + ~) 1 ,~  -+- 4fa 
( ~-(2-~)~ ) 

"[ - -  1 - -  Z1  , 8 = ~ g 2  �9 

From an analysis of the roots of Eq. (2 .1)  it  follows that the s tabi l i ty  condition for the combustion regime invest i -  
gated has the form: 

( 8 - -  1) ~ -  ~- (8 + 1) <~ O, (2.12) 

This inequal i ty  is fulfi l led only for 7 > 0. The quantity z I entering into 7 can be represented in the form: 

TS - !  

(2 ~ ) M , ,  M1 01(Ts)(Ts--To)[ I OO,(T) dT] (2.1a) 
T, 

With the ordinary assumptions of combustion theory concerning the properties o f  the function ~1 (T) (positiveness, 
monotonic increase,  continuity}, the quantity M 1 character izes the "sharpness" of the temperature: dependence of the 

chemica l  react ion ra te .  Obviously, M I > 1. 

For e) I = D exp (--EI/RT)~ an approximate  es t imate  using the inequal i ty  EI/RT >> 1 gives: 

M 1 ~ E  l (TS  - T d)  /RTs2.  

The chemica l  react ion zone in the k-phase is assumed to be inert ialess,  and therefore the results wil l  be valid only 

for sufficiently large act ivat ion energies E I. For z I > 1, s tabi l i ty  condit ion (2.12) is fulf i l led only for e > 1 / ( 2  -- ~). 

This condit ion is necessary but not sufficient.  If  z I > 3 - g, it can be shown that for combustion stabi l i ty  the inequal i ty  

s < s~, (e l  < e2), where ~1,2, the roots of the quadratic t r inomial  (2.12),  must also be satisfied. 

In comparing the s tabi l i ty  condition for the model  considered with the s tabi l i ty  condit ion for Ze l ' dov ich ' s  combus- 
tion model ,  i t  should be borne in mind that for a heat  release in the k-phase tending to zero,  the Q-mode l  does not go 
over into the Ze l ' dov ich  model ,  and condit ion (2.12) into the corresponding condit ion for the parameter  k. 

w 3. Combustion Stabi l i ty  in the T S-mode l  with a Zero-Order  Reaction in the k-Phase 

In this case, as distinct from the Q- model  considered above, the equations are l inear ized for the condit ion T S = 

=const.  From Eq. (2.3) we obtain:  

8r~ (t ~)5 m 8~so = 0  q = ~ -  
q ( l - - ~ ) - - ~ +  - -  - -  : q CPso 

Simi lar ly ,  from Eq. (2.5) 

6m 6Q1 6T~ 

Equations (3.1)  and (a.  2), together with gqs. (2.8) and (2.9) ,  in which it is necessary to assume 6T S = 0, form a 

dosed  system whose character is t ic  equation has the form: 

g t -  4a - -  l (i - -  ~) (~ --  1 --  q) (a. 3) 
2s? (t -- 1~) 8 + q 

Invest igat ion of the roots of Eq. ( 3 . 3 )  shows that the T S combustion reg ime with a zero-order  react ion in the 

k-phase is s table for 

s ( l  - - ~ ) + q  ~ 1 ,  or s ~ t  + q .  (3.4) 
(t + q) (t - -  !~) + q 

Note that  in the case q -- 0, corresponding to the absence of heat  re lease  in the k-phase ,  cr i ter ion (3 .4)  coincides 

with the s tabi l i ty  condit ion obtained by Ze l ' dov i ch .  I t  can be seen from (3 .4)  that in the given case an increase in heat  

release in the k-phase extends the range of values of s corresponding to stable combustion,  

w 4. Combustion Stabi l i ty  in the Q-mode l  with a First-Order Reaction in the k-Phase 

For s teady-s ta te  propagation of the front of a f irst-order exothermic  reac t ion  in the  k-phase  we have the re la t ions:  
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0 

mQi - -  hi I a (x) (I) 1 [T (x)] dx : 

~a dT (4. 1) hia (x) ---- hia o - -  ci (T - -  To) ~- m dx ' 

where a (x) is the concentration of the substance reacting in the k-phase, a ( -  ~o ) = a 0 . Assuming that the chemical 
reaction zone in the k-phase is narrow and averaging the temperature gradient over this zone, an approximate formula 
can be obtained for the propagation velocity of the reaction front: 

TS 

mQ~ (2kiqgs 0 -  m Q 0  = 2k~ I [h~a~ e~ (T ~ , T 0 )  ] q)~ (T) dT -i- 
To 

TS 
~,i (2)~1TSO - -  mQi) I -}- m (1)1 (T) d T ,  f4. '2) 

To 

Linearizing Eq. (4.2) for the condition Q1 = const, we obtain: 

( l -  A  ,s0 =o 
/ m - - Z n T s - - T ~  -{- --~) (PSo 

TS 
( ~I(DI(Ts)(2hla~ 1 f q)l(T)dT) 
zn = 2m%iQi , A =  mops------ ~ �9 

To 

It is easy to obtain t~e charaCteristic equation for 
with Eq. (2 .11) ,  but with the parameter 7 in the form: 

(4.3) 

from Eqs. (4.3), (2.6), (2.8) and (2.10) in a form identical 

Correspondingly, in the case in question the condition for combustion stability will also have the form of inequality 

(2.12) with 7 = 3'1. 

w 5.- Combustion Stability in  the T$-model with a First-Order Reaction in the k-Phase 

Linearizing Eqs. (2.4) for T S = const gives 

0 o  

The dosed system of equations is now formed by equations (5.1), (3.2) and (2.8),  (2.10), in which it is necessary 

to substitute 5T S = 0. Equating the determinant of this system to zero, we obtain the characteristic equation for ~, 
which has the form: 

]~ t -~- 4 f l  - -  I = ~ t ( t  - -  [~ A V 1/2A) 8 Jr- ( t  - -  ~-IA) q (5.2) 
2fl - -  T"-?' T2 = ( 2 - - 9 )  q-- [ -0---1~+ V,A) 

From an analysis of the roots of Eq. (5.2) it follows that the steady-state T S combustion regime with a first-order 
reaction in the k-phase is stable provided that 

t - -  ~s -~ [~-1 A _ ( 5 . 3 )  

Comparing conditions (3 .4 )  and (5.3),  we note that taking into account burnup of the reactant in the k-phase re- 
action extends the limits of combustion stability of the powder. 
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