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The problem of the combustion stability of powders and explosives was first examined by Ya. B. Zel'dovich {1} on
the basis of his theory of the mechanism of combustion of these substances. 1t was established that steady-state combus-
tion of a powder is possible only for k < 1, where k = B (Tg - Tg), 8 = (3 In U/A Ty ), is the temperature coefficient
of the burning rate U, Ty is the initial temperature, and Tg is the temperature at the gasification surface. Physically,
this implies that steady-state combustion of a powder is possible if the temperature gradient at the surface of the con-
densed phase (k-phase) does not exceed a certain valye; a powder which is not hot enough cannot burn.

Subsequent experimental investigations have shown, however, that this combustion stability criterion is not always
satisfied [ 2-4]. The discrepancy between theory and experiment can be associated, in particular, with neglect of the
exothermic reaction in the k-phase.

Here the combustion stability of a powder is investigated by the method of small perturbations, taking into account
the heat release in the k-phase and assuming that the combustion zone in the gas and the region of chemical reaction in
the k-phase directly adjacent to the gasification surface are inertialess, The stability condition is obtained for the two

“possible combustion regimes with reaction in the k-phase discussed in [6, 7] (Tg-and Q-regimes), and for two different
types of reaction, In the case of the Q-regime it is assumed that gasification of the k-phase takes place as a result of an
exothermic reaction when the intrinsic heat release, which characterizes the burning depth, becomes equal to a speci -
fied value Q. In this case in the n_ohstariqnary regime the temperature at the gasification surface does not remain con-
stant, Inthe Tg-regime it is assumed that gasification of the k-phase proceeds at a certain definite temperature (de-
pending, possibly, on the pressure ), which is atrained thanks to heat supplied from the gas phase and as a result of in-
trinsic heat release, the quantity of heat released in the k-phase in the nonstationary regime being a variable.

Note that the question of the effect of heat release in the k-phase and the change of surface temperature on the
stability of combustion of a powder in the Q-regime with a zero-order exothermic reaction in the k-phase, where the
region of combustion in the gas and the zone of chemical reaction in the k-phase are assumed inertialess, has recently
been investigated in [5], The results contained in §2 of the present paper correspond to the case considered in [k
The conclusions are not the same. Obviously, this discrepancy is associated with the fact that the authors of [5], who
used the method of Zel'dovich and Frank-Kamenetskii to derive a formula for the rate of gasification of the k-phase
(this leads to a relation between the rate of gasification, heat flux from the gas phase, and the surface temperature )
assumed that under nonstationary conditions perturbation of the rate of gasification does not depend on perturbation
of the heat flux from the gas phase. :

§ 1, Formulation of the Problem

Stability ina two-stage combustion model is considered. The combustion zone is shown schematically in the fig-
ure, The temperature gradients at the boundaries of the reaction zone in the k-phase are denoted by Pgp and. gy, It
is assumed that the temperature dependences of the chemical reaction rates ®;(T) and &, (T) (in the k-phase and in
the gas) are such that the reactions proceed mainly within narrow temperature ranges close to Tg and T, in the regions
X; < X < 0and Xy < x< X3, respectively (T, is the temperature of the combustion products). A quantity of heat Qq is
released in the k-phase, and a quantity Q, in the gas phase. The total heat release is determined by the initial chemi-
cal energy of the fuel and is equal to' Qg + Q; = const, The region 0 < x < X, is the zone of preheating in the gas. It
is assumed that the characteristic time of processes in the zone x; < x < x3 is small compared with the time of recon-
struction of the thermal layer in the preheating zone in the k-phase, occupying the region — = < x < x;. It follows from
this assumption and from the equality w = D, where D and « are the diffusion coefficient and thermal diffusivity of the
gas, that at any instant the concentration and temperature fields in the gas are similar. In relation to linearization it
is assumed that the time-dependence of all the perturbations is described by the multiplier exp (wt) .

§ 2. Combustion Stability in the Q -model with a Zero-order Reaction in the k-phase

In accordance with the assumption concerning an inertialess reaction zone in the k-phase, we shall use the
Zel'dovich-Frank-Kamenetskii approximation [8] in order to determine the rate of gasification under nonstationary con-

ditions.

In the case in question, this approximation leads to the following equations for the mass rate of gasification:
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where Ay is the thermal conductivity, ly is the heat of reaction in the k-phase. After eliminating the quantity ¢gy from
(2.1) and (2.92), we obtain :
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Linearizing (2. 3) for the condition Qy = const, we find
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For the mass burning rate in the gas we have
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Note that here Q, > hy, since Qy < hy, while the mechanism of release of heat hy —Qqafter gasification is not con-
sidered ",

Linearizing Eq. (2.,9) for the condition Q, = const, taking into account
&y (Ty) > &, (Tg) , we obtain
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In the quasistationary approximation, the law of conservation of energy in
the region x; < % < x3 may be written, following [1], in the form
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where ¢y and ¢, are the specific heats of the k-phase and the gas at constant pressure.

On linearizing (2, 7y and taking into account the condition Q; + Q, = const, we obtain:
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We shall obtain one more relation between the perturbations of the mass velocity ém, the temperature gradient
8¢S, and the surface temperature &Tg from the solution of the problem of the reconstruction of the thermal layer in
the region of the k-phase, where the chemical reaction rate is negligibly small, for small changes in the surface veloc-
ity assuming that the temperature at the point xy is equal to the surface temperature Tg . For perturbations depending
on time as exp (wt ), this solution has the form:
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Q=wmo/U% B, ,=14+V1+40),
where By and B, are arbitrary constants, %, is the thermal diffusivity of the k-phase, and U is the rate of linear displace-
ment on the surface, From the condition 6T (=)= 0 it follows that B, = 0. We find B from the boundary conditions
for x = 0 and establish the required relations :
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*In proofreading, B. V. Novozhilov pointed out that if in (2.5) it is assumed that Qp = hy [which is physically more
justifiable than (2.5) ], then the stability conditions for the Tg-model obtained in §3 and 5 assume the form & < 1,
i.e., they coincide with the stability criterion for Zel'dovich's model,
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From Egs. (2.4), (2.6), (2.8 and (2.10) we obtain the characteristic equation for  :
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From an analysis of the roots of Eq. (2.1) it follows that the stability condition for the combustion regime investi-
gated has the form:

(e—1)*—1v(e+1) <0, (2.12)
This inequality is fulfilled only for y > 0. The quantity z, entering into y can be represented in the form:
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With the ordinary assumptions of combustion theory concerning the properties of the function &; (T) (positiveness,
monotonic increase, continuity), the quantity My characterizes the "sharpness” of the temperature: dependence of the
chemical reaction rate, Obviously, My > 1.

For &y = D exp (—E;/RT), an approximate estimate using the inequality Ey/RT >1 gives:

M; ~ E; (Tg - Td) /RTSZ.

The chemical reaction zone in the k-phase is assumed to be inertialess, and therefore the results will be valid only
for sufficiently large activation energies E;. For z; > 1, stability condition (2. 12) is fulfilled only for & > 1/(2 = p).
This condition is necessary but not sufficient. If zy > 3 — u, it can be shown that for combustion stability the inequality
€ < g9, (61 < &p), Where &1 , the roots of the quadratic trinomial (2. 12), must also be satisfied,

In comparing the stability condition for the model considered with the stability condition for Zel'dovich's combus-
tion model, it should be borne in mind that for a heat release in the k-phase tending to zero, the Q-model does not go
over into the Zel'dovich model, and condition (2.12) into the corresponding condition for the parameter k.

§ 3, Combustion Stability in the Tg-model with a Zero-Order Reaction in the k-Phase

In this case, as distinet from the Q- model considered above, the equations are linearized for the condition Tg =
=const, From Eq. (2.3) we obtain:
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Similarly, from Eq. (2.5)
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Equations (3.1) and (3. 2), together with Eqgs. (2.8) and (2.9), in which it is necessary to assume &7g = 0, form a
closed system whose characteristic equation has the forms
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Investigation of the roots of Eq. (3.3) shows that the Tg combustion regime with a zero-order reaction in the
k-phase is stable for
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Note that in the case q =0, corresponding to the absence of heat release in the k-phase, criterion (3.4) coincides
with the stability condition obtained by Zel'dovich. It can be seen from (3. 4) that in the given case an increase in heat
release in the k-phase extends the range of values of ¢ corresponding to stable combustion.

§ 4. Combustion Stability in the Q-model with a First-Order Reaction in the k-Phase

For steady-state propagation of the front of a first-order exothermic reaction in the k-phase we have the relations:
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where a (x) is the concentration of the substance reacting in the k-phase, a (— = )= a¢ . Assuming that the chemical
reaction zone in the k-phase is narrow and averaging the temperature gradient over this zone, an approximate formula
can be obtained for the propagation velocity of the reaction front:
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Lineafizing Eq.> (4.2 for the condition Q; = const, we obtain:
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It is easy to obtain the characteristic equation for from Egs. (4.3), (2.6), (2.8) and (2.10) in a form 1dent1ca1
with Eq. (2.11), but with the parameter y in the forms
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Correspondingly, in the case in question the condition for combustion stability will also have the form of inequality
(2.12) withy =vys.

§ 5. Combustion Stability in the Tg-model with a First-Order Reaction in the k -Phase

Linearizing Eqs. (2.4) for Tg = const gives.
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The closed system of equations is now formed by equations (5, 1), (3.2) and (2.8), (2.10), in which it is necessary
to substitute §Tg = 0, Equating the determinant of this system to zero, we obtain the characteristic equation for Q,

which has the form:
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From an analysis of the roots of Eq. (5.9) it follows that the steady-state Tg combustion regime with a first-order
reaction in the k-phase is stable provided that
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Comparing conditions (3. 4) and (5.3), we note that taking into account burnup of the reactant in the k -phase re -
action extends the limits of combustion stability of the powder.
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